Blog

Inside the SOC

Balada Injector: Darktrace’s Investigation into the Malware Exploiting WordPress Vulnerabilities

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Apr 2024
08
Apr 2024
This blog explores Darktrace’s detection of Balada Injector, a malware known to exploit vulnerabilities in WordPress to gain unauthorized access to networks. Darktrace was able to define numerous use-cases within customer environments which followed previously identified patterns of activity spikes across multiple weeks.

Introduction

With millions of users relying on digital platforms in their day-to-day lives, and organizations across the world depending on them for their business operations, they have inevitably also become a prime target for threat actors. The widespread exploitation of popular services, websites and platforms in cyber-attacks highlights the pervasive nature of malicious actors in today’s threat landscape.

A prime illustration can be seen within the content management system WordPress. Its widespread use and extensive plug-in ecosystem make it an attractive target for attackers aiming to breach networks and access sensitive data, thus leading to routine exploitation attempts. In the End of Year Threat Report for 2023, for example, Darktrace reported that a vulnerability in one WordPress plug-in, namely an authentication bypass vulnerability in miniOrange's Social Login and Register. Darktrace observed it as one of the most exploited vulnerabilities observed across its customer base in the latter half of 2023.

Between September and October 2023, Darktrace observed a string of campaign-like activity associated with Balada Injector, a malware strain known to exploit vulnerabilities in popular plug-ins and themes on the WordPress platform in order to inject a backdoor to provide further access to affected devices and networks. Thanks to its anomaly-based detection, Darktrace DETECT™ was able to promptly identify suspicious connections associated with the Balada Injector, ensuring that security teams had full visibility over potential post-compromise activity and allowing them to act against offending devices.

What is Balada Injector?

The earliest signs of the Balada Injector campaign date back to 2017; however, it was not designated the name Balada Injector until December 2022 [1]. The malware utilizes plug-ins and themes in WordPress to inject a backdoor that redirects end users to malicious and fake sites. It then exfiltrates sensitive information, such as database credentials, archive files, access logs and other valuable information which may not be properly secured [1]. Balada Injector compromise activity is also reported to arise in spikes of activity that emerge every couple of weeks [4].

In its most recent attack activity patterns, specifically in September 2023, Balada Injector exploited a cross-site scripting (XSS) vulnerability in CVE-2023-3169 associated with the tagDiv composer plug-in. Some of the injection methods observed included HTML injections, database injections, and arbitrary file injections. In late September 2023, a similar pattern of behavior was observed, with the ability to plant a backdoor that could execute PHP code and install a malicious WordPress plug-in, namely ‘wp-zexit’.

According to external security researchers [2], the most recent infection activity spikes for Balada Injector include the following:

Pattern 1: ‘stay.decentralappps[.]com’ injections

Pattern 2: Autogenerated malicious WordPress users

Pattern 3: Backdoors in the Newspaper theme’s 404.php file

Pattern 4: Malicious ‘wp-zexit’ plug-in installation

Pattern 5: Three new Balada Injector domains (statisticscripts[.]com, dataofpages[.]com, and listwithstats[.]com)

Pattern 6: Promsmotion[.]com domain

Darktrace’s Coverage of Balada Injector

Darktrace detected devices across multiple customer environments making external connections to the malicious Balada Injector domains, including those associated with aforementioned six infection activity patterns. Across the incidents investigated by Darktrace, much of the activity appeared to be associated with TLS/SSL connectivity, related to Balada Injector endpoints, which correlated with the reported infection patterns of this malware. The observed hostnames were all recently registered and, in most cases, had IP geolocations in either the Netherlands or Ukraine.

In the observed cases of Balada Injector across the Darktrace fleet, Darktrace RESPOND™ was not active on the affected customer environments. If RESPOND had been active and enabled in autonomous response mode at the time of these attacks, it would have been able to quickly block connections to malicious Balada Injector endpoints as soon as they were identified by DETECT, thereby containing the threat.

Looking within the aforementioned activity patterns, Darktrace identified a Balada Injector activity within a customer’s environment on October 16, 2023, when a device was observed making a total of 9 connection attempts to ‘sleep[.]stratosbody[.]com’, a domain that had previously been associated with the malware [2]. Darktrace recognized that the endpoint had never been seen on the network, with no other devices having connected to it previously, thus treated it as suspicious.

Figure 1: The connection details above demonstrate 100% rare external connections were made from the internal device to the ‘sleep[.]stratosbody[.]com’ endpoint.

Similarly, on September 21, 2023, Darktrace observed a device on another customer network connecting to an external IP that had never previously been observed on the environment, 111.90.141[.]193. The associated server name was a known malicious endpoint, ‘stay.decentralappps[.]com’, known to be utilized by Balada Injector to host malicious scripts used to compromise WordPress sites. Although the ‘stay.decentralappps[.]com’ domain was only registered in September 2023, it was reportedly used in the redirect chain of the aforementioned stratosbody[.com] domain [2]. Such scripts can be used to upload backdoors, including malicious plug-ins, and create blog administrators who can perform administrative tasks without having to authenticate [2].

Figure 2: Advance Search results displaying the metadata logs surrounding the unusual connections to ‘stay.decentralappps[.]com’. A total of nine HTTP CONNECT requests were observed, with status messages “Proxy Authorization Required” and “Connection established”.

Darktrace observed additional connections within the same customer’s environment on October 10 and October 18, specifically SSL connections from two distinct source devices to the ‘stay.decentralappps[.]com’ endpoint. Within these connections, Darktrace observed the normalized JA3 fingerprints, “473f0e7c0b6a0f7b049072f4e683068b” and “aa56c057ad164ec4fdcb7a5a283be9fc”, the latter of which corresponds to GitHub results mentioning a Python client (curl_cffi) that is able to impersonate the TLS signatures of browsers or JA3 fingerprints [8].

Figure 3: Advanced Search query results showcasing Darktrace’s detection of SSL connections to ‘stay.decentralappps[.]com over port 443.

On September 29, 2023, a device on a separate customer’s network was observed connecting to the hostname ‘cdn[.]dataofpages[.]com’, one of the three new Balada Injector domains identified as part of the fifth pattern of activity outlined above, using a new SSL certificate via port 443. Multiple open-source intelligence (OSINT) vendors flagged this domain as malicious and associated with Balada Injector malware [9].

Figure 4: The Model Breach Event Log detailing the Balada Injector-related connections observed causing the ‘Anomalous External Activity from Critical Network Device’ DETECT model to breach.

On October 2, 2023, Darktrace observed the device of another customer connecting to the rare hostname, ‘js.statisticscripts[.]com’ with the IP address 185.39.206[.]161, both of which had only been registered in late September and are known to be associated with the Balada Injector.

Figure 5: Model Breach Event Log detailing connections to the hostname ‘js.statisticscripts[.]com’ over port 137.

On September 13, 2023, Darktrace identified a device on another customer’s network connecting to the Balada Injector endpoint ‘stay.decentralappps[.]com’ endpoint, with the destination IP 1.1.1[.]1, using the SSL protocol. This time, however, Darktrace also observed the device making subsequent connections to ‘get.promsmotion[.]com’ a subdomain of the ‘promsmotion[.]com’ domain. This domain is known to be used by Balada Injector actors to host malicious scripts that can be injected into the WordPress Newspaper theme as potential backdoors to be leveraged by attackers.

In a separate case observed on September 14, Darktrace identified a device on another environment connecting to the domain ‘collect[.]getmygateway[.]com’ with the IP 88.151.192[.]254. No other device on the customer’s network had visited this endpoint previously, and the device in question was observed repeatedly connecting to it via port 443 over the course of four days. While this specific hostname had not been linked with a specific activity pattern of Balada Injector, it was reported as previously associated with the malware in September 2023 [2].

Figure 6: Model Breach Event Log displaying a customer device making repeated connections to the endpoint ‘collect[.]getmygateway[.]com’, breaching the DETECT model ‘Repeating Connections Over 4 Days’.

In addition to DETECT’s identification of this suspicious activity, Darktrace’s Cyber AI Analyst™ also launched its own autonomous investigation into the connections. AI Analyst was able to recognize that these separate connections that took place over several days were, in fact, connected and likely represented command-and-control (C2) beaconing activity that had been taking place on the customer networks.

By analyzing the large number of external connections taking place on a customer’s network at any one time, AI Analyst is able to view seemingly isolated events as components of a wider incident, ensuring that customers maintain full visibility over their environments and any emerging malicious activity.

Figure 7: Cyber AI Analyst investigation detailing the SSL connectivity observed, including endpoint details and overall summary of the beaconing activity.

Conclusion

While Balada Injector’s tendency to interchange C2 infrastructure and utilize newly registered domains may have been able to bypass signature-based security measures, Darktrace’s anomaly-based approach enabled it to swiftly identify affected devices across multiple customer environments, without needing to update or retrain its models to keep pace with the evolving iterations of WordPress vulnerabilities.

Unlike traditional measures, Darktrace DETECT’s Self-Learning AI focusses on behavioral analysis, crucial for identifying emerging threats like those exploiting commonly used platforms such as WordPress. Rather than relying on historical threat intelligence or static indicators of compromise (IoC) lists, Darktrace identifies the subtle deviations in device behavior, such as unusual connections to newly registered domains, that are indicative of network compromise.

Darktrace’s suite of products, including DETECT+RESPOND, is uniquely positioned to proactively identify and contain network compromises from the onset, offering vital protection against disruptive cyber-attacks.

Credit to: Justin Torres, Cyber Analyst, Nahisha Nobregas, Senior Cyber Analyst

Appendices

Darktrace DETECT Model Coverage

  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Rare External SSL Self-Signed
  • Compliance / Possible DNS Over HTTPS/TLS
  • Compliance / External Windows Communications
  • Compromise / Repeating Connections Over 4 Days
  • Compromise / Beaconing Activity To External Rare
  • Compromise / SSL Beaconing to Rare Destination
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Suspicious TLS Beaconing To Rare External
  • Compromise / Large DNS Volume for Suspicious Domain
  • Anomalous Server Activity / Outgoing from Server
  • Anomalous Server Activity / Rare External from Server
  • Device / Suspicious Domain

List of IoCs

IoC - Type - Description + Confidence

collect[.]getmygateway[.]com - Hostname - Balada C2 Endpoint

cdn[.]dataofpages[.]com - Hostname - Balada C2 Endpoint

stay[.]decentralappps[.]com - Hostname - Balada C2 Endpoint

get[.]promsmotion[.]com - Hostname - Balada C2 Endpoint

js[.]statisticscripts[.]com - Hostname - Balada C2 Endpoint

sleep[.]stratosbody[.]com - Hostname - Balada C2 Endpoint

trend[.]stablelightway[.]com - Hostname - Balada C2 Endpoint

cdn[.]specialtaskevents[.]com - Hostname - Balada C2 Endpoint

88.151.192[.]254 - IP Address - Balada C2 Endpoint

185.39.206[.]160 - IP Address - Balada C2 Endpoint

111.90.141[.]193 - IP Address - Balada C2 Endpoint

185.39.206[.]161 - IP Address - Balada C2 Endpoint

2.59.222[.]121 - IP Address - Balada C2 Endpoint

80.66.79[.]253 - IP Address - Balada C2 Endpoint

Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:68.0) - User Agent - Observed User Agent in Balada C2 Connections

Gecko/20100101 Firefox/68.0 - User Agent - Observed User Agent in Balada C2 Connections

Mozilla/5.0 (Windows NT 10.0; Win64; x64) - User Agent - Observed User Agent in Balada C2 Connections

AppleWebKit/537.36 (KHTML, like Gecko) - User Agent - Observed User Agent in Balada C2 Connections

Chrome/117.0.0.0 - User Agent - Observed User Agent in Balada C2 Connections

Safari/537.36 - User Agent - Observed User Agent in Balada C2 Connections

Edge/117.0.2045.36 - User Agent - Observed User Agent in Balada C2 Connections

MITRE ATT&CK Mapping

Technique - Tactic - ID - Sub Technique

Exploit Public-Facing Application

INITIAL ACCESS

T1190

Web Protocols

COMMAND AND CONTROL

T1071.001

T1071

Protocol Tunneling

COMMAND AND CONTROL

T1572


Default Accounts

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS

T1078.001

T1078

Domain Accounts

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS

T1078.002

T1078

External Remote Services

PERSISTENCE, INITIAL ACCESS

T1133

NA

Local Accounts

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS

T1078.003

T1078

Application Layer Protocol

COMMAND AND CONTROL

T1071

NA

Browser Extensions

PERSISTENCE

T1176

NA

Encrypted Channel

COMMAND AND CONTROL

T1573

Fallback Channels

COMMAND AND CONTROL

T1008

Multi-Stage Channels

COMMAND AND CONTROL

T1104

Non-Standard Port

COMMAND AND CONTROL

T1571

Supply Chain Compromise

INITIAL ACCESS ICS

T0862

Commonly Used Port

COMMAND AND CONTROL ICS

T0885

References

[1] https://blog.sucuri.net/2023/04/balada-injector-synopsis-of-a-massive-ongoing-wordpress-malware-campaign.html

[2] https://blog.sucuri.net/2023/10/balada-injector-targets-unpatched-tagdiv-plugin-newspaper-theme-wordpress-admins.html

[3] https://securityboulevard.com/2021/05/wordpress-websites-redirecting-to-outlook-phishing-pages-travelinskydream-ga-track-lowerskyactive/

[4] https://thehackernews.com/2023/10/over-17000-wordpress-sites-compromised.html

[5] https://www.bleepingcomputer.com/news/security/over-17-000-wordpress-sites-hacked-in-balada-injector-attacks-last-month/

[6]https://nvd.nist.gov/vuln/detail/CVE-2023-3169

[7] https://www.geoedge.com/balda-injectors-2-0-evading-detection-gaining-persistence/

[8] https[:]//github[.]com/yifeikong/curl_cffi/blob/master/README.md

[9] https://www.virustotal.com/gui/domain/cdn.dataofpages.com

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Justin Torres
Cyber Analyst
Book a 1-1 meeting with one of our experts
share this article
USE CASES
No items found.
PRODUCT SPOTLIGHT
No items found.
COre coverage
No items found.

More in this series

No items found.

Blog

No items found.

Appleby law firm uses Darktrace and Microsoft for proactive cyber resilience and compliance

Default blog imageDefault blog image
02
May 2024

Security Challenges for Appleby law firm

Appleby is an international law firm that provides offshore legal advice to clients. As such, assuring confidentiality is one of our priorities. I regularly discuss cybersecurity with our clients and prospects who want to know that their data will be protected.

Like all security teams, we are working to keep ahead of the evolving cyber threat landscape while also managing our internal tools and infrastructure.

Although we already applied security philosophies like defense-in-depth and multi-tiered protection, we wanted to expand our coverage especially given the increase in working from home. These improvements would be especially impactful given our lean security team, which must provide 24/7 coverage for our 10 offices around the globe that span several jurisdictions and time zones.

Given these challenges and goals, we turned to Darktrace.

Going beyond an XDR with Darktrace and Microsoft

We wanted to move away from point solutions, and after doing extensive research, we chose to consolidate around Darktrace and Microsoft. This helped us achieve increased coverage, seamless security operations, and even reduced costs.

While considering our upgrade from E3 to E5, we went through an extensive TCO exercise. After reviewing our stack, we were able to sunset legacy tools and consolidate our vendors into an integrated and cost-efficient modern platform built around Darktrace and Microsoft. We now have a single portal to manage security for all our coverage areas, improving upon what we had with our legacy eXtended Detection and Response (XDR) tool.

Darktrace’s AI-led understanding of our business operations, people, processes, and technology has helped us automate so our small team can easily achieve continuous detection, investigation, and response across our systems. This has helped us save time and overcome resource limitations, giving us comprehensive cyber resilience and new opportunities to move past firefighting to take proactive measures that harden our environment.

Darktrace and Microsoft have allowed us to simplify workflows and reduce costs without compromising security. In fact, it’s now stronger than ever.

Proactive protection with Darktrace PREVENT/Attack Surface Management™

I come from a physical security background, so I’ve always been keen on the prevention side. You would always rather prevent somebody from entering in the first place than deal with them once they are inside. With that mindset, we’re pushing our strongest controls to the boundary to stop threat actors before they gain access to our systems.

To help us with that, we use Darktrace PREVENT/Attack Surface Management™ (ASM). With just our brand name, it was able to reveal our entire attack surface, including shadow IT we didn’t know was there. PREVENT/ASM continuously monitors our exposures with AI and reports its findings to my team with actionable insights that contain key metrics and prioritizations based on critical risk. This enables us to maximize our impact with limited time and resources.

PREVENT/ASM has already identified typo squatting domains that threat actors set up to impersonate our brand in phishing attacks. Finding this type of brand abuse not only defends our company from attackers who could damage our reputation, but also protects our clients and vendors who could be targeted with these imitations. PREVENT/ASM even collects the necessary data needed for my team to file a Notice and Takedown order.

In addition to finding vulnerabilities such as brand abuse, PREVENT/ASM integrates with our other Darktrace products to give us platform-wide coverage. This is key because an attacker will never hit only one point, they’re going to hit a sequence of targets to try to get in.

Now, we can easily understand vulnerabilities and attacks because of the AI outputs flowing across the Darktrace platform as part of the comprehensive, interconnected system. I have already made a practice of seeing an alert in Darktrace DETECT/Network and clicking through to the PREVENT/ASM interface to get more context.

Achieving compliance standards for our clients

We work hard to ensure confidentiality for our clients and prospects and we also frequently work with regulated entities, so we must demonstrate that we have controls in place.

With Darktrace in our security stack, we have 24/7 coverage and can provide evidence of how autonomous responses have successfully blocked malicious activity in the past. When I have demonstrated how Darktrace works to regulators, it ticks several of their boxes. Our Darktrace coverage has been critical in helping us achieve ISO27001 compliance, the world’s best-known standard for information security management systems.

Darktrace continues to prove its value. Last year, we brought a red team into our office for penetration testing. As soon as the first tester plugged into our network, Darktrace shut him out. We spent hours clearing the alerts and blocks to let the red team continue working, which validated that Darktrace stopped them at every step.

The red team reported that our controls are effective and even in the top 10% of all companies they had ever tested. That feedback, when presented to ISO auditors, regulators, and clients, immediately answers a lot of their more arduous questions and concerns.

Darktrace helps us meet compliance frameworks while reassuring both my team and our clients that our digital infrastructure is safe.

Continue reading
About the author
Michael Hughes
CISO, Appleby (guest contributor)

Blog

Inside the SOC

Detecting Attacks Across Email, SaaS, and Network Environments with Darktrace’s AI Platform Approach

Default blog imageDefault blog image
30
Apr 2024

The State of AI in Cybersecurity

In a recent survey outlined in Darktrace’s State of AI Cyber Security whitepaper, 95% of cyber security professionals agree that AI-powered security solutions will improve their organization’s detection of cyber-threats [1]. Crucially, a combination of multiple AI methods is the most effective to improve cybersecurity; improving threat detection, accelerating threat investigation and response, and providing visibility across an organization’s digital environment.

In March 2024, Darktrace’s AI-led security platform was able to detect suspicious activity affecting a customer’s email, Software-as-a-Service (SaaS), and network environments, whilst its applied supervised learning capability, Cyber AI Analyst, autonomously correlated and connected all of these events together in one single incident, explained concisely using natural language processing.

Attack Overview

Following an initial email attack vector, an attacker logged into a compromised SaaS user account from the Netherlands, changed inbox rules, and leveraged the account to send thousands of phishing emails to internal and external users. Internal users fell victim to the emails by clicking on contained suspicious links that redirected them to newly registered suspicious domains hosted on same IP address as the hijacked SaaS account login. This activity triggered multiple alerts in Darktrace DETECT™ on both the network and SaaS side, all of which were correlated into one Cyber AI Analyst incident.

In this instance, Darktrace RESPOND™ was not active on any of the customer’s environments, meaning the compromise was able to escalate until their security team acted on the alerts raised by DETECT. Had RESPOND been enabled at the time of the attack, it would have been able to apply swift actions to contain the attack by blocking connections to suspicious endpoints on the network side and disabling users deviating from their normal behavior on the customer’s SaaS environment.

Nevertheless, thanks to DETECT and Cyber AI Analyst, Darktrace was able to provide comprehensive visibility across the customer’s three digital estate environments, decreasing both investigation and response time which enabled them to quickly enact remediation during the attack. This highlights the crucial role that Darktrace’s combined AI approach can play in anomaly detection cyber defense

Attack Details & Darktrace Coverage

Attack timeline

1. Email: the initial attack vector  

The initial attack vector was likely email, as on March 18, 2024, Darktrace observed a user device making several connections to the email provider “zixmail[.]net”, shortly before it connected to the first suspicious domain. Darktrace/Email identified multiple unusual inbound emails from an unknown sender that contained a suspicious link. Darktrace recognized these emails as potentially malicious and locked the link, ensuring that recipients could not directly click it.

Suspected initial compromise email from an unknown sender, containing a suspicious link, which was locked by Darktrace/Email.
Figure 1: Suspected initial compromise email from an unknown sender, containing a suspicious link, which was locked by Darktrace/Email.

2. Escalation to Network

Later that day, despite Darktrace/Email having locked the link in the suspicious email, the user proceeded to click on it and was directed to a suspicious external location, namely “rz8js7sjbef[.]latovafineart[.]life”, which triggered the Darktrace/Network DETECT model “Suspicious Domain”. Darktrace/Email was able to identify that this domain had only been registered 4 days before this activity and was hosted on an IP address based in the Netherlands, 193.222.96[.]9.

3. SaaS Account Hijack

Just one minute later, Darktrace/Apps observed the user’s Microsoft 365 account logging into the network from the same IP address. Darktrace understood that this represented unusual SaaS activity for this user, who had only previously logged into the customer’s SaaS environment from the US, triggering the “Unusual External Source for SaaS Credential Use” model.

4. SaaS Account Updates

A day later, Darktrace identified an unusual administrative change on the user’s Microsoft 365 account. After logging into the account, the threat actor was observed setting up a new multi-factor authentication (MFA) method on Microsoft Authenticator, namely requiring a 6-digit code to authenticate. Darktrace understood that this authentication method was different to the methods previously used on this account; this, coupled with the unusual login location, triggered the “Unusual Login and Account Update” DETECT model.

5. Obfuscation Email Rule

On March 20, Darktrace detected the threat actor creating a new email rule, named “…”, on the affected account. Attackers are typically known to use ambiguous or obscure names when creating new email rules in order to evade the detection of security teams and endpoints users.

The parameters for the email rule were:

“AlwaysDeleteOutlookRulesBlob: False, Force: False, MoveToFolder: RSS Feeds, Name: ..., MarkAsRead: True, StopProcessingRules: True.”

This rule was seemingly created with the intention of obfuscating the sending of malicious emails, as the rule would move sent emails to the "RSS Feeds” folder, a commonly used tactic by attackers as the folder is often left unchecked by endpoint users. Interestingly, Darktrace identified that, despite the initial unusual login coming from the Netherlands, the email rule was created from a different destination IP, indicating that the attacker was using a Virtual Private Network (VPN) after gaining a foothold in the network.

Hijacked SaaS account making an anomalous login from the unusual Netherlands-based IP, before creating a new email rule.
Figure 2: Hijacked SaaS account making an anomalous login from the unusual Netherlands-based IP, before creating a new email rule.

6. Outbound Phishing Emails Sent

Later that day, the attacker was observed using the compromised customer account to send out numerous phishing emails to both internal and external recipients. Darktrace/Email detected a significant spike in inbound emails on the compromised account, with the account receiving bounce back emails or replies in response to the phishing emails. Darktrace further identified that the phishing emails contained a malicious DocSend link hidden behind the text “Click Here”, falsely claiming to be a link to the presentation platform Prezi.

Figure 3: Darktrace/Email detected that the DocSend link displayed via text “Click Here”, was embedded in a Prezi link.
Figure 3: Darktrace/Email detected that the DocSend link displayed via text “Click Here”, was embedded in a Prezi link.

7. Suspicious Domains and Redirects

After the phishing emails were sent, multiple other internal users accessed the DocSend link, which directed them to another suspicious domain, “thecalebgroup[.]top”, which had been registered on the same day and was hosted on the aforementioned Netherlands-based IP, 193.222.96[.]91. At the time of the attack, this domain had not been reported by any open-source intelligence (OSINT), but it has since been flagged as malicious by multiple vendors [2].

External Sites Summary showing the suspicious domain that had never previously been seen on the network. A total of 11 “Suspicious Domain” models were triggered in response to this activity.
Figure 4: External Sites Summary showing the suspicious domain that had never previously been seen on the network. A total of 11 “Suspicious Domain” models were triggered in response to this activity.  

8. Cyber AI Analyst’s Investigation

As this attack was unfolding, Darktrace’s Cyber AI Analyst was able to autonomously investigate the events, correlating them into one wider incident and continually adding a total of 14 new events to the incident as more users fell victim to the phishing links.

Cyber AI Analyst successfully weaved together the initial suspicious domain accessed in the initial email attack vector (Figure 5), the hijack of the SaaS account from the Netherlands IP (Figure 6), and the connection to the suspicious redirect link (Figure 7). Cyber AI Analyst was also able to uncover other related activity that took place at the time, including a potential attempt to exfiltrate data out of the customer’s network.

By autonomously analyzing the thousands of connections taking place on a network at any given time, Darktrace’s Cyber AI Analyst is able to detect seemingly separate anomalous events and link them together in one incident. This not only provides organizations with full visibility over potential compromises on their networks, but also saves their security teams precious time ensuring they can quickly scope out the ongoing incident and begin remediation.

Figure 5: Cyber AI Analyst correlated the attack’s sequence, starting with the initial suspicious domain accessed in the initial email attack vector.
Figure 5: Cyber AI Analyst correlated the attack’s sequence, starting with the initial suspicious domain accessed in the initial email attack vector.
Figure 6: As the attack progressed, Cyber AI Analyst correlated and appended additional events to the same incident, including the SaaS account hijack from the Netherlands-based IP.
Figure 6: As the attack progressed, Cyber AI Analyst correlated and appended additional events to the same incident, including the SaaS account hijack from the Netherlands-based IP.
Cyber AI Analyst correlated and appended additional events to the same incident, including additional users connecting to the suspicious redirect link following the outbound phishing emails being sent.
Figure 7: Cyber AI Analyst correlated and appended additional events to the same incident, including additional users connecting to the suspicious redirect link following the outbound phishing emails being sent.

Conclusion

In this scenario, Darktrace demonstrated its ability to detect and correlate suspicious activities across three critical areas of a customer’s digital environment: email, SaaS, and network.

It is essential that cyber defenders not only adopt AI but use a combination of AI technology capable of learning and understanding the context of an organization’s entire digital infrastructure. Darktrace’s anomaly-based approach to threat detection allows it to identify subtle deviations from the expected behavior in network devices and SaaS users, indicating potential compromise. Meanwhile, Cyber AI Analyst dynamically correlates related events during an ongoing attack, providing organizations and their security teams with the information needed to respond and remediate effectively.

Credit to Zoe Tilsiter, Analyst Consulting Lead (EMEA), Brianna Leddy, Director of Analysis

Appendices

References

[1] https://darktrace.com/state-of-ai-cyber-security

[2] https://www.virustotal.com/gui/domain/thecalebgroup.top

Darktrace DETECT Model Coverage

SaaS Models

- SaaS / Access / Unusual External Source for SaaS Credential Use

- SaaS / Compromise / Unusual Login and Account Update

- SaaS / Compliance / Anomalous New Email Rule

- SaaS / Compromise / Unusual Login and New Email Rule

Network Models

- Device / Suspicious Domain

- Multiple Device Correlations / Multiple Devices Breaching Same Model

Cyber AI Analyst Incidents

- Possible Hijack of Office365 Account

- Possible SSL Command and Control

Indicators of Compromise (IoCs)

IoC – Type – Description

193.222.96[.]91 – IP – Unusual Login Source

thecalebgroup[.]top – Domain – Possible C2 Endpoint

rz8js7sjbef[.]latovafineart[.]life – Domain – Possible C2 Endpoint

https://docsend[.]com/view/vcdmsmjcskw69jh9 - Domain - Phishing Link

Continue reading
About the author
Zoe Tilsiter
Cyber Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Start your free trial
Darktrace AI protecting a business from cyber threats.